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Introduction.  In this 6 part series on short-range radio we have covered one way short-range system 
design including link budgeting, regulatory issues, and some issues of silicon design at the transmit side. 
Parts 1, 2, 3, and 4 published in Sept. and Oct., 2001, and in Feb. and March, 2002.  We close out this 
introductory series with practical antenna design and regulatory compliance using primarily single ended 
drivers, with an introduction to the understanding of differential drivers. There is some analysis available 
on matching these antennas, though this is often error prone due to lack of appreciation of the strong 
impact of the underlying electromagnetics.  Since most of the available literature is aimed at the paging 
receiver application, there is little information on the harmonic performance needed in transmit mode to 
meet regulatory requirements.  An apparently original method of fundamentally sound analysis of the 
matching of the tapped small loop antenna is given, one that is somewhat in disagreement with the 
established methods, but that we have confirmed experimentally and via electromagnetic simulation.   
Though the term "tapped loop" is common, we shall refer to this method as the "transformer" loop 
antenna in reference to what is actually its fundamental mode of operation.  This method also leads 
directly to understanding the harmonic performance of the tapped/transformer loop antenna.  Basic 
performance is contrasted with the other basic matching choices to help in understanding the 
risk/cost/performance trade-offs.  
 
The Basic (unmatched) Loop Antenna.  Most control and security type applications in the UHF range 
require antennas on the PCB, due to the combination of small size, high ruggedness, and low cost 
required of these designs.  The frequency range involved is generally 285 to 470 MHz (see Part 2), where 
a full sized quarter wave whip would be from 6.28 to 10.4 inches, or 16.0 to 26.3 cm.  This size generally 
eliminates full sized whips, leading to the printed loop as the most popular.  This antenna generally only 
has 1%-20% radiation efficiency, but it is small, easy to design (with the exception of significant errors in 
some published matching methods), insensitive to minor design errors since it usually has to be tuned, 
provides a modest amount of harmonic suppression (improved by matching, as discussed later), and may 
actually have enhanced efficiency when near the human body.  The low conductivity of the human body 
decreases electric field and increases magnetic field (Ref. 8, p. 295), and has led to the general view that 
electrically small "magnetic" loop antennas are the most efficient for miniature human worn equipment 
like pagers, RF tags, and controllers.  The magnetic field intensification near (within one quarter 
wavelength of) the human body is about 4.5 dB at 285 MHz, dropping to about 2.8 dB at 470 MHz and 0 
dB at 900 MHz.  In use the loop inductance is usually considered to be parallel resonated with a variable 
tuning capacitor so that the driver sees a large real load which must be matched for optimum power 
delivery.  Other options to manual tuning include resistor de-Queing to allow fixed capacitors and on-die 
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automatic tuning, but unfortunately the losses 
imposed by these methods are sometimes 
unacceptable.  In particular, when a low cost 
wideband receiver must be used that prevents 
setting the IF bandwidth to match the spectral 
occupancy of the transmitted signal, then 
"averaging" as described in Part 2 is often used to 
maintain link quality, which requires higher 
radiation efficiency and thus usually a well 
matched and individually tuned high Q loop 
antenna. 
 
Figure 11 shows the standard loop antenna model 
where series and loss resistances are moved over 
to give a total parallel equivalent resistance that 
sets the Q of the loop.  A matched single ended 
driver would provide similar loading by driving 
into the non-grounded end of the capacitor, and Q 
will be cut approximately in half from the limit set by radiation and loss resistance. If the loop is directly 
driven by a lower impedance PA (unmatched) then Q will be lower still.  
 
The radiation resistance of a loop, under the condition that it is electrically small (perimeter < 0.3 λ), is 
given (Ref. 9) as: 
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A = loop area (perimeter as center of width of trace) in square meters 
λ = wavelength in meters 
 
For the frequencies and sizes normally used, this equation generally holds out to about the 2nd to 4th 
harmonic and is adequate for predicting the lower order harmonic performance where regulatory 
compliance is more commonly an issue.  At higher frequencies where the antenna is not electrically small, 
the current in the antenna varies as a function of position, and must be taken account of as outlined in ref. 
13 or via simulation.  For a rectangular antenna with sides L1 and L2 built in copper, given copper 
conductivity = 5.8E7, eq. 45 becomes: 
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An expression for loss resistance derived from fundamental principles (skin depth based analysis), 
assuming that line width is much greater than line thickness, but thickness is also much greater than skin 
depth (true for practical boards), is given by: 
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In eq. 47, 
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Figure 11: (a)  Loop antenna physical 
implementation  (b)  The standard loop antenna 
model.  (c)  Transformed where all resistances are 
viewed in parallel.   
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l = the total perimeter of the antenna in meters, measured at the center of the trace 
w = the width of the trace in meters 
σ = conductivity 
µ = permeability 
 
For the common rectangular antenna case with copper trace and with permeability of 1.256E-6, eq. 47 
becomes: 
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The radiation efficiency of the loop is commonly given as: 
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For a given driving current to the loop this expression follows immediately from power being i2R.  The 
alert reader with RF design experience may immediately wonder about driving current changing with 
variation in loss and matching resistance if a perfect match is provided by other circuitry.  A simple 
analysis can show that if match is maintained, this same expression results if efficiency is defined as the 
radiated power divided by the total driving power.  Though often neglected, losses associated with the 
resonating capacitor are usually significant and are counted in the denominator of eq. 49  as another series 
resistance loss term.  Good COG capacitors will typically have series loss resistances of 0.1 to 0.2 ohms, 
variable capacitors from 0.1 to 0.5 ohms, and X7R and Z5U dielectrics 0.5 and 1 ohms (see 
www.murata.com for an excellent database of these losses over capacitor construction, value, and 
frequency).  These capacitor losses can dramatically affect both radiation efficiency and matching, and 
can have a moderate effect on harmonics.   
 
It is often helpful in analysis to transform losses between series and parallel modes, which is valid around 
a narrow range of frequency.  Using series losses as the base mode, we may define: 
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Of course, to resonate a loop we require an expression for loop inductance.  A remarkably simple formula 
for inductance of a polygon of general shape that is usually good to within 5% is given by Ref. 10 as: 
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In eq. 57 l is perimeter as measured at the center of the trace, w is width, and A is area.   
 
Let us consider an illustrative numerical example of a loop size we shall later match in several ways.  
Assume operation at 434 MHz (common European choice) with a rectangular antenna of 3.4 cm by 1.2 
cm, with trace width of 2 mm, and with a capacitor with series loss at this frequency of 0.138 ohms.  We 
may calculate loss resistance of 0.250 ohms, radiation resistance of 0.0227 ohm, total series resistance of 
0.286 ohms, and resulting maximum efficiency of 7.95%.  From eq. 57 inductance is 52.9 nH, and 
resonating capacitance is thus 2.54 pF.  The unloaded Q is 505 and the equivalent parallel resistance is 
72.9K.  
 
The drivers on low power transmitters would normally have an output impedance of from 50 ohms to 
several KOhms, so a direct connection across this loop is obviously a bad mismatch that would not attain 
the maximum possible efficiency.  The low impedance of the typical driver would also lower the Q 
drastically and reduce the harmonic rejection of the antenna.  Despite these disadvantages an unmatched 
loop is occasionally used, so analysis is provided as follows.  The total loss resistances of the loop 
antenna where losses are modeled as a resistance is series with the inductor are: 
 

lossChlossLradLStot RLCRRR 22 )(ω++=  (58) 
 
In eq. 58 Rrad is radiation resistance, RlossL is ohmic loss resistance in the loop, RlossC is capacitor series 
loss resistance, and all these are functions of frequency as described above.  The coefficient of RlossC is 1 
at the fundamental, but greater than 1 at the harmonics.  This coefficient results from moving capacitor 
series loss Rcs over to be in series with the inductor for modeling purposes.  This sum may be represented 
in parallel form at the fundamental and harmonic frequencies by eq. 55, giving a quantity we shall call 
RPtotH, where "H" represents the harmonic number and is 1 for the fundamental.  Assuming the antenna 
still satisfies the constant spacial current approximation for the first few harmonics, we may write the 
radiation efficiency for the fundamental and first few harmonics as: 
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=η   (59), where it is understood that Rrad must be found from eq. 45 at the appropriate harmonic 

H.  Converting impedances to admittances (and resistance to conductance), we may write a handy current 
divider function expressing the fraction of current at each harmonic H that flows in the equivalent parallel 
conductance at each harmonic.  This conductance, GPtotH in the equation below, also contains the loss 
resistances of the loop antenna and the capacitor.  The desired divider function is given by: 
 



















−++
=

)
1

(
L

CjGG

G
MagD

h
hdriverPtotH

PtotH
IH

ωω
 (60) 

 
At the fundamental the circuit is resonant and the imaginary component is zero, but at the harmonics it is 
dominated by the capacitance and most of the driver current available at the harmonics is shunted to 
ground and does not radiate.  The ratio of each harmonic current to driver fundamental current is needed 
to determine the harmonic rejection, but for approximation we may assume that the fundamental power is 
10 dB over the first few harmonics (typical for a compressed class A single ended PA), but that the 
antenna is 5 dB more directional for the harmonics.  The harmonic rejection (radiated harmonic to carrier 
power) in measured field strength for each harmonic H may thus be approximated to about +/- 5 dB 
accuracy as: 
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The mismatch of the directly driven loop (power applied at the loop capacitor) is large.  In general, for a 
source with impedance Rdriver driving a load of parallel impedance Zin (which at resonance should be real 
impedance Rin) , the "mismatch loss" (which does not include efficiency losses) may be determined by: 
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See Table 7 for example performance numbers for the loop antenna numerical example given earlier (a 
1.2 X 3.4 cm loop at 434 MHz) when directly driven by a source of 1.4KOhm impedance.  The mismatch 
loss in this case is about 11 dB, the efficiency about 8% (resulting total efficiency less than 1%), and the 
harmonic rejection just over 20 dB.  There is risk of failing harmonic regulatory requirements (see Part 2) 
in addition to a generally weak link performance, though the poor Q of the antenna is enabling towards 
not requiring tuning.   
 
Tapped Capacitor Loop Antenna.  The large mismatch and relatively poor harmonic suppression of the 
unmatched loop antenna may be much improved by the tapped capacitor matching method shown in 
single ended form in Fig. 12.  Here the fundamental definition of "matching" is seen in elegant simplicity, 
where it means viewing the total set of loss impedances in the loop antenna as the single input parallel 
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impedance Rpar = Zin that gives the same unloaded Q.  When Rpar matches driver resistance, the maximum 
power transfer theorem is satisfied and the loaded Q will be half 
the unloaded Q.  Intuitively, the tapping may be seen to give a 
down impedance transform through conservation of energy, with 
the voltage at the tap point lowered from the inductor voltage by 
the capacitive divider action, and thus requiring a lower 
impedance (if all loss resistance is modeled at that point to give 
the same Q) at the tap point to dissipate the same power.  Pursuing 
this analytically will give the analysis equation 63 for parallel Zin 
as a function of inductor parallel resistance Rp.       
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To develop design equations for the tapped capacitor case and to 
understand its harmonic performance, we first write the broadband 
conductance looking into the capacitor tap as: 
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In eq. 64 Rs is the resistance in series with the inductor that models all losses.  We desire to solve this 
equation for the C1 and C2 force the desired Zin and resonant frequency.  The reciprocal of the real part of 
eq. 64 gives the input impedance at resonance and provides one equation.  Setting the imaginary part 
equal to zero at the desired resonant frequency gives the other.  The results are: 
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Eq. 64 also provides the way to understand the harmonic performance of the tapped capacitor loop 
antenna.  For the large impedance transform from parallel resistance across the inductor to parallel Zin at 
the tap point C2 will normally be much larger than C1, and much larger than the C of the unmatched loop.  
Thus, C2 dominates the input conductance at the tap and shunts most current to ground, greatly improving 
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Figure 12:  Single ended tapped 
capacitor antenna matching. 
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harmonic rejection.  This may be quantified in a manner similar to the unmatched loop, where we find the 
"current divider function" for harmonic current that flows in the real part of the input impedance (where it 
must flow to be radiated) as: 
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Despite this divider function, some current still flows in the real part of loop radiation resistance that is 
transformed to the input, and it is this current that radiates power.  The radiated power at the fundamental 
(H = 1) and at each harmonic (where the loop is still "small") is: 
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In eq. 68, irmsH is the rms current available from the source at harmonic frequency H, and is the 
fundamental current when H = 1 (where DIH = 0.5 due to the match condition).  The harmonic rejection 
relative to the carrier is given by the ratio of harmonic power in eq. 68 to the radiated carrier power also 
from eq. 68 (H=1), degraded by the extra directivity of the antenna at the harmonic frequency.  Assuming 
the applied harmonics are 10 dB down from the carrier and that the antenna is no more than 5 dB more 
directive for the harmonics gives the approximation: 
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At the harmonics we may for hand calculations simplify eq. 64 to be: 
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Technically both C1 and C2 must be well controlled to meet both desired resonance and input impedance 
conditions.  In practice, with a variable capacitor for C1 or C2, the tapped capacitor method can yield a 
good match, near perfect resonance, and harmonic rejection over 40 dB.  For the loop antenna discussed 
earlier at 434 MHz, with driver impedance of 1.4 KOhm, we find L = 52.9 nH, C1 = 2.95 pF, C2 = 18.3 
pF, predicted second harmonic of -50.6 dBc, and predicted 3rd harmonic of -52 dBc.  There is little 
mismatch loss, so the total efficiency is the loop and capacitor efficiency of about 8%.  These harmonics 
will normally pass all regulatory requirements, but to achieve such low loop harmonic levels the board 
designer must beware of parasitic radiation from traces and bond wires that may actually dominate 
measured performance.   
 
Transformer Approach to Loop Matching.  We may also take a transformer approach to the matching 
of small loop antennas, and this approach is common due to its minimum parts count for inductively 
loaded configurations that maximize output power.  As shown in Fig. 13, a small loop is placed near 
(usually actually sharing a side with) the radiating loop antenna.  The radiating loop still contains a tuning 
capacitor C.  The two loops actually form a loosely coupled transformer, though there is a strong 
tendency among circuit designers to want to view this structure as a tapped inductor (no mutual coupling) 
or autotransformer (tapped inductor with mutual coupling).  The transformer model seems counter-
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intuitive even to experienced RF designers, since they are trained to think in lumped component terms 
and not in the underlying electromagnetic terms upon which lumped models are based.  Thus they 
normally conceive of a segment of trace as having complete inductance all by itself in the absence of a 
return path, which leads them to misinterpret Fig. 13 as a tapped inductor or autotransformer.  No less an 
authority than Fujimoto (ref. 9) in his well respected work on small antennas mistakenly analyzes the loop 
antenna matching as an autotransformer, and this common error incorrectly influences the design of loop 
antennas to this day.  The mistaken mental model has at its root the failure to understand that only closed 
current loops have inductance or mutual inductance.  It is exacerbated by the fact that the form of 
transformer exhibited by Fig. 13 is not one the engineer has encountered in his basic training--no class we 
ever took showed a separated transformer model for a situation where primary and secondary currents 
actually share a path segment.   
 
An open mind and a review of the underlying 
electromagnetics shall allow the short-range radio 
designer to add this important form of transformer 
antenna to his tool kit.  To set about developing the 
correct first order understanding of this structure we 
shall state the basic electromagnetics upon which our 
transformer model argument is based with minimal 
explanation, leaving the reader to review his basic 
undergraduate e-mag text for verification.  But, we 
shall interpret this electromagnetics with respect to 
this new situation, the loop antenna of Figure 13, in 
some detail to make the model fully clear and 
generate the correct mental model in the reader's 
mind.  
 
We first consider the definition of a voltage 
(electromotive force emf) as the closed line integral of electric field, which is the field form of Kirchoff's 
Voltage Law: 
 

∫ •= dLEemf  (71) 
 
Next consider the fact that electric flux through a surface is given as the surface integral of flux density 
over that surface: 
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Faraday's Law giving voltage (emf) as a function of flux is given as: 
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d
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Ampere's Law giving current as the closed line integral of magnetic field is:   
 

∫ •= dLHI (74) 
 
where magnetic field H is related to flux density B by: 
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Figure 13:  Transformer matched loop 
antenna geometric structure.  
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Figure 14:  The mutual inductance between an 
infinite wire and small nearby loop provides a 
useful approximation of the mutual inductance 
between the primary and secondary of a 
tapped loop antenna.  

 
HB 0µ= (75) 

 
When we can calculate terminal voltage and current, and can take impedance as their ratio, we have a 
circuit model captured.  The electromagnetic equations above provide the means to get current and 
voltage relationships in terms of the physical geometry.  Ampere's Law relates flux and current, over a 
closed line integral giving current contained within the closed path.  From Ampere's Law, current can be 
found from H or B, or H and B can be found from current.  When B is known, total flux can be found 
from eq. 72, and then with flux known, voltage can be found from eq. 73.  Conceptually we have thus 
developed the full information needed for the circuit model, and from eqs 71-74 we see that this always 
relies upon closed paths around current or field, and 
not upon a line segment.  Alternately, we can use 
the definition of inductance and mutual inductance 
given below to make this conceptual process a bit 
shorter: 
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N is the number of filamentary loops of current 

(one in Fig. 13) and I is the current "linked" by the 

flux, meaning the current that surrounds the area 

the flux density is integrated over to get the total 

flux.  In eq. 77, M12 is the mutual inductance where 

flux produced by closed (or infinite) path I1 links 

current in closed or infinite path I2.  It is also true 

that M12 = M21.  L and M result in circuit equations 

of the form: 
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where V1 is the total voltage through a self inductance with current I1 that is also linked to a second 
current I2 sharing mutual inductance M with the current path described by I1.  Note that in 76 and 77 
inductance cannot be calculated for a segment of line.  It requires a closed path around a surface to get the 
total flux quantities as the surface integral of flux density.  This is why a tapped inductor or 
autotransformer model of Fig. 13 is simply wrong--it does not satisfy the definition of inductance.  But an 
integration over a closed surface, such as the primary and secondary shown in Fig. 13, gives total flux 
linking a closed current path, which then by 76 and 77 allows calculation of self and mutual inductance 
that allows writing circuit equations.   
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With our normal circuit design mental model altered to take these fundamentals into account we may now 
start sneaking up on a correct (transformer based) circuit model for Fig. 13.  Referring to Fig. 14, we have 
a loop intended as the primary of inner dimension La and Lb linked by the flux generated by an infinitely 
long thin round wire.  The loop is here considered to be made of thin round wire also and its inner 
dimension is separated from the center of the infinite wire by distance Loffset.  Of course, most antennas 
will be made on circuit board and thus made of flat trace, but the round wire model is simpler analytically 
and is a good approximation to an antenna made of trace, and so is used here.  Most basic e-mag texts will 
go through the small exercise needed to use Ampere's Law (eq. 74) to get radial H and B fields around the 
infinite round wire induced by current Is in the wire.  This gives: 
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Using eq. 72 and the differential area element dS shown to integrate over the area of the primary (La X 
Lb), a few lines will yield the flux, and then dividing by Is as per eq. 77 gives the mutual inductance: 
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Eq. 80 is a usefully accurate approximation (slightly large) to the mutual inductance between a small 
primary and large secondary, as the other sides of the secondary are much farther away from the primary.  
The separated form as shown may be used if the maximum possible mutual inductance is not needed (it 
will be shortly shown how impedance is controlled by mutual inductance).  If maximum mutual 
inductance is desired, the two loops may be brought into actual contact, at which point Loffset will be 
equal to the radius of the secondary wire plus the diameter of the primary wire (not zero, which would be 
unacceptable in the denominator in eq. 80).  When the two loops are brought into contact there will be no 
drastic change in the circuit model, which is the tricky point for most circuit designers to accept.  The 
only effect contact has on the model form is to 
force the primary and secondary current to mix in 
the shared segment, but this does not change the 
fundamental nature of the structure giving the 
mutual inductance which dominates the behavior.  
When the currents are shared in the segment, there 
is a small voltage induced in both the primary and 
secondary due to resistance in the shared segment, 
not only from each on its respective side, but also 
from the other.  This leads to the technical need 
for the model to have either a single resistor in the 
common (to ground) terminal of primary and 
secondary, or for a "trans-resistance" to be 
inserted in each of the primary and secondary.  It 
is critically important to note that the contact does 
not force an autotransformer model.  The shared 
segment is not an inductor, only the complete 
current loops of primary and secondary are true 
inductors.  An autotransformer model would be 
appropriate only if a loop of primary were drawn 
inside the secondary.   
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Figure 15:  Circuit model of transformer matched 
loop antenna acts as a separated transformer with 
the minor exception of the shared resistance over 
the common section of trace.  
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Fig. 15 is the desired circuit model for the transformer matching case using the concepts developed above. 
The small loop is designated as the primary and the large loop as the secondary of the transformer.  
Despite the fact that the loops of Fig. 13 are touching and share a side, the structure truly functions as a 
separated transformer with the exception that the shared side has a loss and radiation resistance that is 
represented as Rcommon. Normally this common resistance is so small that it may be set to zero in 
calculations.   
 
The transformer of Figure 15 is not an "ideal" transformer with infinite inductance and winding ratio N 
that gives impedance transform N2.  It is a linear transformer of winding ratio one for which full circuit 
equations must be written.  Neglecting Rcommon, we may write primary and secondary KVL equations as: 
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Solving this equation set for primary voltage and current and then taking their ratio as input impedance 
yields (see Hayt, ref. 15):  
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ZIN is the total complex input impedance.  We have used XP as the magnitude of the reactance of the 
primary and XS as the magnitude of the reactance of the secondary to simplify.  M is the transfer 
inductance between the two loops, with units in Henrys. From eq. 83 we note that when XS is zero 
(secondary resonance), ZIN still contains some reactance from the primary inductor impedance XP.  In 
practice, an extremely small amount of secondary reactance change is required (by varying say the loop 
capacitance slightly) to obtain a purely real ZIN.  From (72) we find that the input impedance at resonance 
is approximately 
 
   (84) 
 
 
Equation 84 provides a simple method to match the low resistance RS of a resonant loop antenna to the 
KOhms required by CMOS integrated circuits. Initially eq. 84 is used to calculate the needed transfer 
inductance M to achieve a specific input impedance ZIN = RD for matching.  Secondly, using eq. 80,  La, 
Lb and offset are adjusted until the required M is achieved. Eq. 80 will generally be found to be accurate 
within about 10%, but if the greatest possible accuracy is desired, an electromagnetic simulator can be 
used to refine the geometry more closely.  As we will see later, to minimize radiation from the primary 
loop and to lower primary loop reactance, La should be made as large as possible, and Lb and offset 
should be made as small as possible. 
 
 
Harmonic Behavior.   At higher frequencies input impedance eq. 83 simplifies to: 
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     (85) 
 
 
In the transformer case we have current 
flowing through the primary and secondary 
loops.  Like any current loop, the primary 
loop is an unavoidable contributor to 
radiation.  Also, except for right around the 
fundamental, the primary exhibits a 
broadband response with little filtering of the 
first few harmonics (up to the point where 
jωLp exerts a pole), unless additional filtering such as a parallel tank is used in the driver output.   The 
primary can thus dominate over the secondary as a harmonic radiator, though if the primary area is kept 
as small as possible (large La to get necessary mutual inductance, small Lb to keep primary area small) it 
will normally fall a few dB under the secondary.  To calculate Rrad for the primary and secondary loop use 
eq. 46 twice. Then use eq. 48 twice to calculate loss resistance for both loops.  We may then rewrite the 
input impedance at the harmonics in terms of the primary and secondary resistances of eq. 85 as  
 
 
         (86) 
 
 
In eq. 86 the terms are:  RlossPH = primary loop series ohmic loss at harmonic H, RradPH = primary loop 
series radiation resistance at H, RlossSH = secondary loop series loss at H, RradSH = secondary loop radiation 
resistance at H, and RcSH = secondary tune capacitor series loss at H.   
 
Assuming that the source resistance ZD >> jωLp, we may use the real part of eq. 86 to write the ratio of 
radiated harmonic power PH to carrier power P1 as 
 
 
 
    (87) 
 
 
 
The harmonic radiation efficiency is given by: 
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Further assuming harmonic power to be 10dB below the carrier and then adding back 5dB for harmonic 
directivity we reduce (79) to 
  
    (89) 
 
 

Table 7:  Calculated performance of the unmatched and matched 
12 X 34 mm loop antenna at 434 MHz.  The loop has inductance of 
52.9 nH, series loss resistance of 0.125 ohm, and capacitor series 
loss of 0.138 ohm.  Parasitic harmonics such as off power supply 
lines are not included.  

 Mismatch
Loss (dB) 

Total 
Eff. 

2nd 
Harm Rej 

(dB) 

3rd Harm
Rej (dB) 

Unmatched 11.3 0.59% 22.1 23.6 
Tapped 

Capacitor 
0 8% 50.6 52.0 

Transformer 0 8% 41.5 36.0 
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If ZD is not >> jωLp, then a current divider function may be written similarly to the tapped capacitor case 
and added to eqns. 87 and 89. 
 
The basic performance of the unmatched, tapped capacitor, and inductor antennas with the same 12 X 34 
mm radiating loop is summarized in Table 7.  For the transformer loop, harmonic rejection of 41.5 dB for 
the second harmonic and 36 dB for the third harmonic was calculated. A 7dB increase in power between 
the second and third harmonic was expected due to radiation resistance being a fourth-order function of 
frequency as in eq. 45.  It is important to note that the harmonic rejection of the transformer loop antenna 
is not based on parallel LC filtering, but on extreme mismatching at the harmonic frequency.  The loop 
capacitor brings about the resonance condition which in cooperation with the mutual inductance of the 
transformer leads to a good match at the fundamental.  Away from the fundamental, this match is not 
supported and the input impedance of the primary is extremely small, so that i2R radiated power is also 
small.   
 
Working with Differential Drivers.  Most discrete short-range transmitter designs use single ended RF 
output based on a discrete transistor, and are thus easy to visualize in terms of a driver model referenced 
to the same ground as RF test instruments.  We have used single ended drive in the analyses of this article 
as it is more illustrative in introducing the basic matching forms.  But most integrated transmitters use a 
differential output that is not as intuitively clear.  The desire to carry signals in differential mode is a 
consequence of the need to maintain amplifier stability in the presence of a relatively poor RF ground 
inside the chip (separated from board ground by bond wire and pin inductances), the need to maintain 
power supply and ground common mode noise rejection (the RF 
circuitry is very close to the digital control circuitry in an integrated 
transmitter), and the convenience of matched devices on the die that 
can meet these needs.  A secondary benefit is the extra transmit 
power that can be provided if voltage swing limits with a single 
device are the limiting power factor.   
 
The easiest way to visualize differential drivers with a loop 
antenna is to use the "half circuit concept" depicted in Fig. 16.  
This concept is based on acknowledging the fact that the drivers 
are matched but have voltage outputs that are 180 degrees out of 
phase.  This results in points on the circuit where the voltage does 
not swing relative to ground, and these points can be viewed as  
artificial grounds.  This allows us to consider the full antenna as 
consisting of two half circuits that are each driven single ended, 
and that each remain resonant at the desired frequency with half 
the inductance and resistance, and twice the capacitance of the full 
circuit.  Each half circuit also maintains the same Q.  
 
It is not necessary to maintain a perfect geometric balance in a 
loop antenna to use differential drive.  To reduce components parts 
may be combined.  This may result in loop antennas whose 
functionality is not apparent at a glance, but by breaking the parts 
back up into the symmetric circuit needed for visualization the 
operation and matching will become clear.   For example, the 
circuit in Fig. 17 that at first appears to have no matching is seen 
to actually be the excellent tapped capacitor form, highly 
efficiently implemented with just two capacitors.  
 
Laboratory Measurements.  To certify a short-range transmitter 
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Figure 17:  The Half Circuit 
Concept applied to understand an 
efficient differentially driven 
tapped capacitor loop antenna.  
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Figure 16:  The Half Circuit 
Concept provides for 
understanding the application of 
single ended drive analysis to 
differentially driven loop 
antennas.  
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as regulatory compliant requires testing and a report generated by a government agency approved 
laboratory.  It normally cost approximately $2,000 per day to conduct such testing, though a clearly 
passing product might require only a half day for complete testing.  In any event, it is expensive in time 
and money to have to loop through the test lab several times to get a product to pass with empirical 
experimentation.  A far better procedure is to deliberately design the product to pass and perform 
confirmation testing in an internal lab.  The first order analytic methods given in this article allow a good 
approximation of fundamental power and a fair approximation of what the loop is capable of in terms of 
low order harmonic rejection.  Electromagnetic simulation is the most feasible way to attack harmonic 
analysis at the higher harmonics or anywhere the small loop approximation does not hold.  A future 
article will present detailed layout guidance to ensure that actual harmonics achieved are not too much 
worse than what the loop is capable of.  With the fundamental set several dB below maximum and with 
some degree of safety margin on harmonic emissions, one may go to the test lab confident of first pass 
success.  
 
FCC Measurements.  The basic mathematics of field strength measurement are as follows.  As 
mentioned in Part 2 of this series, the Part 15.231 the rms field strength emissions from intentional 
radiators shall not exceed  
 

75.3)260(041667.)( +−= ffEss  (8)  (control operations) 
 
at 3 meters, with spurious emissions required to be down a factor of 10 (more if spurious emissions fall 
into restricted frequencies specified in Part 15.209).  The designer needs a convenient means to measure 
the field strength emitted by their product.  A simple test set up can exist of a quarter wave whip antenna 
for the fundamental and each harmonic of interest, and a spectrum analyzer.  Spectrum analyzers measure 
received power in watts.  Therefore, we need to convert from field strength (V/m) to power (W). 
 
Part 1 presents the “effective aperture” of an antenna given as a function of frequency (wavelength) and 
directivity, as eq. 1.   
 

 π
λ

4
0

2 D
A em =

    (1)   
 
The directivity D0 of a quarterwave whip is about 1.5.  The received power from a test antenna as a 
function of rms electric field, effective aperture, and free space impedance "η" was given in eq. 2, which 
may be solved for field strength as: 
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The FCC emission limits specify received field strength at 3 meters, which may be a bit inconvenient to 
set up in a cramped lab.  The field strength limits may be extrapolated to a convenient range using: 
 

2

11
2 R

ER
E =   (89) 

 
About the minimum range usable is 1 meter, where near field effects are starting to be seen.  This set of 
equations is all that is needed for basic FCC type measurements, though harmonics above the 4th or 5th 
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will be difficult to measure because of declining antenna aperture and their low level compared to the 
spectrum analyzer noise floor.  Higher order harmonics generally require an LNA ahead of the spectrum 
analyzer and a directional test antenna to improve aperture.  Vertical movement and polarization shift of 
the directional receive antenna will also be needed to emulate the normal measurement practice of 
certified labs in seeking spacial maximums.  
 
Fig. 18 illustrates the field strength limits for the fundamental frequency 434 MHz and harmonics up to 
the 10th converted to power in dBm at 1 meter that would be measured with a quarterwave whip. 
 

 
 
European Measurements.  European nations generally require measurement of effective radiated power 
in watts as opposed to field strength. For polarization matched antennas that are aligned on directionality 
maximums the Friss Transmission Equation given as eq. 3 may be rewritten as: 
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Here Prec is receive power, PtranERP is effective transmit power (transmitted power times transmit antenna 
gain), R is range in meters, n is the path loss exponent  (2.0 in free space), and G0r is the gain of the 
receive antenna (directivity multiplied by efficiency loss).  The below equations are also useful for 
transforming between U.S. and European regulatory limits.   
 
 2203333.0 rmstranERP ERP =  (91) 
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Figure 18:  Power limits for 434 MHz fundamental and harmonics as measured with a quarterwave whip at 
1 meter that meet the requirements of FCC 15.231.  The Excel file to provide this graph for any desired 
carrier will be made available on the Microchip web site.  Note the 3rd harmonic falls into a restricted band 
and has a more stringent requirement. 
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tranERPrms P
R

E
477.5

=   (92) 

 
Conclusion.  The material contained in this article is sufficient for good accuracy in matching and in 
predicting fundamental efficiency.  We believe the transformer model of the loop antenna to be 
previously unpublished with the exception of our own recent application note, and that this method for the 
first time provides a correct basic model of the tapped loop antenna.  Here the circuit designer's intuition 
can lead to erroneous conclusions, and reversion to the underlying electromagnetics is required.  Based on 
the terminal behavior of the loop antenna and its behavior over the first few harmonics where the loop is 
still electrically small, the relations given should allow approximate prediction of radiated harmonics.  We 
find the tapped capacitor antenna to be capable of excellent harmonic suppression, and the transformer 
loop antenna to be capable of good suppression.  However, one often finds that a given board layout does 
not meet the predicted harmonic suppression.  This is probably most often due to non-ideal effects in the 
layout, such as harmonic leakage onto power lines that then radiate above the level of the loop.  Future 
articles and application notes will expand the antenna design information presented here with detailed 
advice on frequency selection, parts tolerance, layout methods, and cost trade-offs. We also plan to extend 
the general knowledge presented in this series to also cover modulated crystal oscillators, receiver design, 
protocols, error detection and correction, and the design of firmware specifically for short-range radio 
applications. 
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