
SSTV1 Modem Technical Description

Moe Wheatley, AE4JY , April. 1997 1

SSTV1 Modem Technical Description

Project Description

The SSTV modem software project was an experiment in using DSP methods to
modulate and demodulate an audio FM Slow Scan TV signal using the TAPR/AMSAT
DSP-93 platform. Traditional decoders and encoders use either a simple op-amp
limiter, or PC sound card to decode the FM audio SSTV signal. This project explored
the use of a digital phase locked loop to perform the demodulation function.

Some of the SSTV1 modem implementation features:

• AGC function on input samples.
• I and Q quadrature signal components generated with Hilbert Bandpass filters.
• Digital complex PLL used for obtaining input frequency information.
• SSTV encoding using a phase coherent modulation of a numerically controlled

oscillator.
• Automatic CW callsign ID after picture transmission.
• Communication with modem uses 38400bps serial data using DSP-93 UART.
• Uses JVFAX(7.0 or 7.1) for user interface and various picture format conversions.

Slow Scan Television(SSTV) is an old mode that was developed to send low frame rate
B/W television images over standard voice bandwidth audio channels. Due to the
proliferation of low cost PC’s, this basic modulation scheme has evolved into a method
of transferring full color still pictures stored on PC’s back and forth between stations.
Although a zillion different picture transmission modes exist, only a handful are popular
and the low level modulation scheme is common to them all. This project addresses
the low level decoding and encoding of this low level audio FM signal and lets the high
level picture protocol and synchronization be handled by a sort of shareware without a
fee program, JVFAX.

The SSTV Signal
The first step is to understand a little about the nature of the SSTV signal. Information
on the details of SSTV signals is sketchy at best. The information here is based on
various sources found on the Internet and also in descriptions given in the
documentation found with the various SSTV programs. The accuracy of the information
is therefore somewhat uncertain. Because of the large number of modes we’ll only look
at the details of one of the more popular ones called “Scottie-S1” developed by E.T.J.
Murphy GM3SBC.

The beginning of a transmission consists of a vertical sync pulse that is a 300msec
interval of 1200 Hz tone. (Usually there is a period of tone prior to the VIS code but I
haven’t found any details or standards for this pre VIS tone) Most programs also
encode on top of this vertical sync pulse a serial data stream called a VIS(Vertical
Interval Signaling) code that can be decoded and used to specify which transmission

SSTV1 Modem Technical Description

Moe Wheatley, AE4JY , April. 1997 2

format is being sent. The VIS code uses 1100 and 1300Hz tones to indicate “1”’s and
“0”’s respectively in a serial data byte. The following diagram illustrates the beginning
of a picture and the first line of image data.

Note that each line of video is divided into three color sections Red, Green, and Blue.
The picture decoder software must overlay these three sections together to form the
line of a full color image. The horizontal sync pulse is used to indicate the beginning of
a new line of picture data. Usually once the first few horizontal sync pulses are found,
the decoding software ignores them and relies on accurate internal time references to
ride through the rest of the picture. This requires accurate calibration of the software to
prevent slanted pictures. Most software packages provide some means to adjust their
internal clocks to compensate for clock inaccuracies.

Scottie-S1 mode consists of 256 lines of video data. The time between each horizontal
sync pulse is 429mSec. This gives a total transmission time of .3+256*.429=110.1
seconds.

The number of picture elements within each line is a function of how fast one samples
the video data and the bandwidth of the video data signal. JVFAX displays 340 pixels
per line while most other programs display 320. The worst case scenario is a picture
consisting of 340 alternating lines of black and white. A test of several of SSTV
programs revealed that in reality only about half this number of lines are actually able to
be transmitted. This would mean that the SSTV signal has to make 170 transitions

SSTV1 Modem Technical Description

Moe Wheatley, AE4JY , April. 1997 3

from 1500 to 2300Hz in a period of .429/3=.140 seconds. This represents a modulation
frequency of (170/2)/.17=500Hz. The peak deviation is (2300-1500)/2=400Hz.

The modulation index(β) is the peak deviation/modulation frequency = 400/500 = .8.
For tone modulation the FM signal bandwidth is about 2(β+1)*modulation frequency.
So the FM bandwidth is about 2*(.8+1)*500 = 1800Hz.

In reality, bandwidth is traded off for better noise and weak signal operation. After a lot
of on the air testing it was found that a good trade off of picture resolution and noise
performance was with a 1300Hz filter bandwidth from 1050Hz to 2350Hz.

The DSP-93 platform consists of a 40 MHz Texas Instruments TMS320C25 16 bit DSP
chip, surrounded by 32K words of program memory and 32K words of data RAM. An
analog interface board contains a TI TLC32044 14 bit A/D, D/A converter, a
asynchronous UART chip, and various I/O ports for radio control and LED display
control. A software controllable gain block is provided for adjusting the receiver input
level to the A/D converter. A monitor EPROM is used to provide a downloader function
as well as storing built in modem software and test applications. Programs can be
downloaded into the DSP-93 using utility programs that run on a PC.

The following diagram shows the basic setup for using the DSP-93 to send and receive
SSTV signals. A DOS based PC running the program JVFAX(7.0 or 7.1) is the user
interface. The DSP-93 connects to the radio using one of the radio ports. It connects
to the PC using a standard COM serial port configured to run at 38400 bps. A little
more information is given in the file SSTV1USR.PDF concerning setup of JVFAX to
operate in this mode.

38400
bps

RS232
LinkJVFAX

RADIO

DSP-93DOS
PC

SSTV1 Modem Technical Description

Moe Wheatley, AE4JY , April. 1997 4

Software Design Method

The software for the SSTV1 modem was designed in a modular fashion using “C”
language blocks to describe each function. Once the code blocks were defined, then
the C320-25 assembly code was hand assembled using the “C” code blocks as a
reference. This may seem cumbersome but designing in assembly language can get
very complicated and confusing in a hurry even with generous comments. By designing
the code in a higher level language, one doesn’t get bogged down in implementation
details until the design is ironed out. This may take a little longer to get to the debug
stage, but reduces the number of bugs once you get there, especially as the program
gets more complicated.

The software source was also broken into several parts mainly to ease in editing. This
sort of implements a “poor man’s” linking assembler in that one can edit and debug
using just the file associated with a general task instead of having to search through
one large cumbersome source file. When assembling of course, all the files have to be
re-assembled.

Data queues(FIFO, Circular, or “rubber band” buffer) are used on the A/D and D/A
channel to reduce the timing constrains on the software and allow even distribution of
processing time.

The only time critical operation is the actual A/D and D/A sampling operation which is
performed by the TLC32044 CODEC chip in conjunction with the DSP hardware. Since
the data is taken from or put into the data sample queues at precise time intervals, the
rest of the software is not constrained to operate on the data in real time. This allows
the software to perform periodic operations longer than the sample time interval as long
as the average processing time does not exceed the sample time interval.

Another software method used was the use of indirect function calls to implement state
machines which are of use at various places in the code. Basically the address of the
function to call is placed in a RAM variable. An indirect call using that RAM variable
results in execution of the specified function. Within that function, a “NEXT STATE”
can be specified by simply loading the RAM variable with the address of the next state
function. In this manner, complicated state machines can be implemented fairly easily.

The software is broken into eight files for easier manipulation:

• SSTVMAIN.ASM This is the main entry file and is the one that is specified for
assembling as it has all the include references for the auxiliary files. It contains
Constant definitions, variable allocations, hardware and software initialization,
interrupt service routines, and low level bit twiddling functions. The main code
service loop also resides here which calls all the other modules in a round robin
fashion to service all the various tasks of the modem.

SSTV1 Modem Technical Description

Moe Wheatley, AE4JY , April. 1997 5

• SSTVDATA.TBL This file contains various constant data tables used throughout
the modem. A SIN table, a CW lookup table, and FIR coefficients are contained
here.

• SSTVAIN.ASM This file contains all the routines that service the A/D input samples
as they arrive and demodulate it.

• SSTVAOUT.ASM This file contains all the routines that create the SSTV audio
signal for transmission. The D/A output samples are generated here.

• SSTVIN.ASM This file contains all the routines that service the JVFAX formatted
input bytes as they arrive from the DSP-93 UART and creates the proper frequency
data for the SSTVAOUT module.

• SSTVOUT.ASM This file contains all the routines that generate the JVFAX
formatted serial output data from the demodulated frequency data as it is decoded
by the SSTVAIN module.

Software Descriptions

The software begins executing after being downloaded by first initializing the hardware
resources on the DSP-93. The TLC32044 AIO chip is initialized to run at a sample rate
of 10893 sample per second. The 16C550 UART chip is initialized to 34800 bps. This
is the JVFAX interface rate. The onboard timer of the TMS320C25 chip is set to
interrupt every 5 milliseconds. This is used as a general purpose timer for some of the
initialization routines, LED display, and CW ID timing functions. Several initialization
routines are called to initialize various variables used by each module. After
initialization, the interrupts are enabled, and the main service loop is entered in which
all four software modules are called in a loop continuously.

SSTV1 Modem Technical Description

Moe Wheatley, AE4JY , April. 1997 6

A/D
 Input

Input
Sample

Que

SSTVAIN

SSTVOUT

UART
Output

SSTVAIN

D/A
 Output

Output
Sample

Que

SSTVAOUT

SSTVIN

UART
 Input

First the AIO interrupt service routine will be described. It’s function is to send a new
sample from the Sample_Que out the D/A PORT and store a new A/D sample into the
Sample_Que. Since the A/D and D/A are run at the same sample rate, only one
interrupt service routine is used for both. Also since one word is removed and one word
is placed in the Sample_Que at every sample time, only 3 pointers are need to maintain
the Sample_Que.

void RxIntService(){
 Save_Context();
 DXR = Sample_Que[AR6]; // write D/A from Sample_Que
 Sample_Que[AR6++] = DRR; // read A/D into Sample_Que
 if(AR6>Sample_Que+SAMPQUESIZE-1) // deal with wrap around
 AR6 = Sample_Que;
 Restore_Context();
}

Three Auxiliary registers(AR6,AR5,AR4) are used as pointers to the Sample_Que. AR3
is used as a software stack pointer to save and restore processor context since the
320C25 doesn’t save anything except the return address during interrupts.

SSTV1 Modem Technical Description

Moe Wheatley, AE4JY , April. 1997 7

A/D data can be removed from the Sample_Que as long as AR5 != AR6.
D/A data can be placed in the Sample_Que as long as AR4 != AR5.

SSTV1 Modem Technical Description

Moe Wheatley, AE4JY , April. 1997 8

SSTVAIN.ASM Module

The block diagram below shows the general operation of this module. First the
samples are processed by the AGC block to try and keep the amplitude constant. The
signal is then bandpass filtered and split into I and Q terms and fed to the complex PLL
block. The PLL outputs a signal proportional to the input signal frequency and also a
lock indicator to qualify the output as valid frequency data.

Frequency
DATA
Out

DATA
Input

AGC
BLOCK

BP FIR
Filter

Hilbert BP
FIR

Filter

Complex
PLL

Lock
Detector

Lock
Detector

Out

I

Q

A/D samples are pulled out of the Sample_Que and passed through a clipping detector.
This block just sees if any samples are above some peak threshold and flashes a front
panel LED. This is useful in setting the maximum receive audio level.

The AGC works by monitoring the incoming sample stream and calculating the slope of
the incoming signal by subtracting the present sample from the previous sample. If the
sign of this difference(slope) changes, then a peak in the incoming wave form has
occurred. The absolute value of the sample is then stored as the signal peak level. A
running average is calculated over 8 samples to smooth out the signal peak values. A
16 stage delayed version of the input is then multiplied by the inverse of the average
peak signal to obtain an AGC’d signal for the remaining signal processing.

The delay line enables one to act on “future” input data and begin the AGC action on
the signal before it arrives at the end of the delay line. An input spike can be detected
by the peak detector and the gain can be reduced before the spike actually reaches the
end of the delay line and disrupt downstream processing. LED2 is turned on if the
input signal is below the level where the AGC can operate.

SSTV1 Modem Technical Description

Moe Wheatley, AE4JY , April. 1997 9

Clipping
Detector

AGC’d
DATA
Out

DATA
Input +

Sign
Changed??

XOR

16StageDelay
Line

Average
over8

Samples

PEAK
Value

abs()

1/x

-

I/Q Signal Generation

The next step is to band pass filter the AGC’ed input samples and split them into their
I/Q components. This could be done using a mixing scheme but another method was
chosen. A band pass filter pair can be generated using two FIR filters that not only
provide the desired band pass characteristics but also creates the complex outputs.
The filters are calculated using the following method as described in Frerking’s book
“Digital Signal Processing in Communication Systems” and I’m sure in others too.

1. Create a low pass FIR filter with the desired pass band and stop band
characteristics assuming that “0” frequency is the desired band pass center
frequency.

2. Transform the low pass coefficients into the I and Q band pass filters using the
following conversion:

Ih n h n f n
N

TBP LP C() ()cos([])= − −
2 2

1
2

π

Qh n h n f n
N

TBP LP C() ()sin([])= − −
2 2

1
2

π

SSTV1 Modem Technical Description

Moe Wheatley, AE4JY , April. 1997 10

Where hlp(n) = FIR coefficients of the low pass filter.
Fc = Band pass center frequency
N = number of FIR taps
T =sample period
IhBP(n) = FIR coefficients for the I filter
QhBP(n) = FIR coefficients for the Q filter

The following C program converts a file containing the low pass filter coefficients into
two files containing the I and Q bandpass FIR filter coefficients:
/*===*/
/* Low pass FIR Coeficient conversion to Hlbert bandpass */
/* by M. Wheatley 03-01-1997 */
/* Last Changed < lptobp.c > Saturday 3-1-1997 8:32 AM */
/*...*/
/* This program takes as a command line argument the name of a file */
/*containing the coefficients of a low pass FIR filter in ASCII format. */
/* It then asks for the sample frequency, and the desired bandpass center */
/*frequency. */
/* The program outputs two files with the same name as the name given in*/
/*the command line argument but with the extensions .ibp and .qbp denoting */
/*the I and Q band pass filter coefficient files. */
/*===*/
#include <stdio.h>
#include <conio.h>
#include <stdlib.h>
#include <string.h>
#include <ctype.h>
#include <math.h>

#define MAXTAPS 255

FILE *strmin;
FILE *strmout1;
FILE *strmout2;
char string[512];
char * newstr;
char outfile1[128];
char outfile2[128];

/*%%%*/
/* --------- */
/* | m a i n | */
/* --------- */
/* This routine is called when the program starts. */
/*%%%*/
void main(int argc, char *argv[])
{
double hlp, ibp, qbp, cfreq, Fs, Wo;
int linecount, N;
int ix;
 N = argc;
 ix = 0;
// get input file name
 while(argv[1][ix] != 0 && argv[1][ix] != ’.’){
 outfile1[ix] = argv[1][ix];
 outfile2[ix] = argv[1][ix];
 ix++;
 }
 outfile1[ix] = ’.’; outfile2[ix++] = ’.’;
 outfile1[ix] = ’i’; outfile2[ix++] = ’q’;
 outfile1[ix] = ’b’; outfile2[ix++] = ’b’;
 outfile1[ix] = ’p’; outfile2[ix++] = ’p’;
 outfile1[ix] = 0; outfile2[ix++] = 0;

 printf("\nEnter Sample frequency (Hz)-");
 ix = scanf("%lf", &Fs);
 printf("\n Sample Freq = %8.4f",Fs);
 printf("\nEnter Bandpass Center Frequency (Hz)-");

SSTV1 Modem Technical Description

Moe Wheatley, AE4JY , April. 1997 11

 ix = scanf("%lf", &cfreq);
 printf("\n Center Freq = %8.4f",cfreq);
 Wo = 2 * 3.14159 * cfreq;
/*--*/
/* See if can open specified file for reading & writing */
/*--*/

 if((strmin = fopen(argv[1],"r")) != NULL &&
 (strmout1 = fopen(outfile1,"w")) != NULL &&
 (strmout2 = fopen(outfile2,"w")) != NULL) {
 printf("\nFile [%s] is being processed.\n", argv[1]);
 N = 0;
// find filter length
 do{
 newstr = fgets(string,MAXTAPS-1,strmin);
 if(newstr != NULL){
 N++;
 }
 }while(newstr != NULL);
 printf("\n Filter Length = %d\n\n",N);

 rewind(strmin);
/*--*/
/* Read file into buffer one line at a time, till the */
/* the EOF is reached. */
 linecount = 0;
 do{
 newstr = fgets(string,MAXTAPS-1,strmin);
 if(newstr != NULL){
 hlp = atof(newstr); // convert coeficient string to float
// apply transform to low pass filter coefficients
 ibp = 2.0 * hlp * cos((Wo/Fs)*(linecount-((N-1)/2)));
 qbp = 2.0 * hlp * sin((Wo/Fs)*(linecount-((N-1)/2)));

 fprintf(strmout1,"%8.6f\n",ibp);
 fprintf(strmout2,"%8.6f\n",qbp);
 linecount++;
 }
 }while(newstr != NULL);
 printf("\nConverted %d coefficients.\n", linecount);
 printf("\nOutput files are [%s], [%s]", outfile1, outfile2);

fclose(strmin);
fclose(strmout1);
fclose(strmout2);

 }
/*--*/
/* Here if can’t open the specified input/output files

*/
/*--*/
 else {
 printf("\n\nSpecified file(s) cannot be opened.\n");
 }
 exit(0);
}
/*+++++++++++++++++++++ E N D P R O G R A M ++++++++++++++++++++++++++*/

The low pass filter coefficients were obtained using a “MathCAD” program. The design
parameters for the SSTV lowpass filter were

 Filter Specification:
Sampling Frequency in Hz: = 10893
Passband Ripple in dB (Peak Gain=1) = 1dB
Passband Frequency in Hz = 650 Hz
Stop Band Attenuation in dB = 50dB
Stop Band Frequency in Hz = 950 Hz

SSTV1 Modem Technical Description

Moe Wheatley, AE4JY , April. 1997 12

0 1000 2000 3000 4000 5000

60

40

20

-0.00414601

δs 20

δs

Ak

5446.50 fk

The above is the Mathcad low pass filter response.

The low pass filter was transformed into two band pass filters by multiplying the LP
coefficients by the earlier described equations. The resulting filters were two 107 Tap
FIR filters to generate the I and Q signals.

SSTV1 Modem Technical Description

Moe Wheatley, AE4JY , April. 1997 13

Above is a plot of the I channel band pass FIR filter. The frequency scale is normalized
to the sample frequency of 10893Hz.

SSTV1 Modem Technical Description

Moe Wheatley, AE4JY , April. 1997 14

Complex PLL Detector

The next task is to use the I/Q input signals to phase lock a complex NCO (numerically
controlled oscillator). The resulting frequency feedback control signal can then be used
as the demodulated FM output signal.

The input signal is complex and can be written as:
Ae A t jA tj t

in in
in− = +ϖ ϖ ϖcos() sin()

The numerically controlled oscillator signal is also complex and can be written as:
e t j tj t

nco nco
nco− = +ϖ ϖ ϖcos() sin()

Multiplying the input signal by the complex conjugate of the NCO signal results in the
following terms:

Ae e Ae A t t jA t tj t j t j t t
in nco in nco

in nco in nco− − −= = − + −ϖ ϖ ϖ ϖ ϖ ϖ ϖ ϖ() cos() sin()

First look at the imaginary term A t tin ncosin()ϖ ϖ− .

The argument of the sin() term is the phase difference between the incoming signal and
the locally generated NCO. This is the phase error term that can be used as feedback
to the PLL. Once locked, the phase error will be small so A A∆ ∆θ θ≅ sin().

Note the amplitude of the input signal “A” is part of the Phase Error term and in order to
keep the phase error gain constant in the PLL, the input signal must be kept at a
constant amplitude thus the need for AGC before the detection process.

Dusting off an old math book revealed the following trig identity:
sin() sin() cos() cos()sin()x y x y x y− = −

Applying it to the term A t tin ncosin()ϖ ϖ− gives:
Phzerr A t t A t t A t tin nco in nco in nco≅ − = −sin() sin() cos() cos()sin()ϖ ϖ ϖ ϖ ϖ ϖ

Since A tincos()ϖ = real part of input signal or the Iterm
and A tinsin()ϖ = imaginary part of input signal or the Qterm,

Phzerr Qterm t Iterm tnco nco≅ −() cos() ()sin()ϖ ϖ
Next look at the real term of the complex conjugate multiplied input signal term
A t tin ncocos()ϖ ϖ− .
If the phase difference is zero(PLL is locked) then ϖ ϖin ncot t=
Thus cos() cos()ϖ ϖin ncot t− = =0 1. Thus this term is at a maximum when the phase error
is zero. This term can be used to help determine when phase lock has occurred.
The following is a block representation of the phase error and lock detector.

SSTV1 Modem Technical Description

Moe Wheatley, AE4JY , April. 1997 15

NCO
sin/cos

generator

+ Phzerr

+ LOCK

I

Q -

sin

I

Q

cos

Numerically Controlled Oscillator and PLL

The NCO section is described by the following block diagram:

+ ncophzacc
16bits

Phzerr

Phase_const

+

Freq_const nco_freq

SIN_TABLE

+

PI/2

SIN_TABLE
COS

SIN

Demodulated
FM

top 8 bits
of
ncophzacc

to
phase

detector

The NCO uses a phase accumulator that increments by an amount depending on the
phase error and also the value of “nco_freq” which is a value that is the integral of the

SSTV1 Modem Technical Description

Moe Wheatley, AE4JY , April. 1997 16

phase error and represents the NCO frequency. If one looks at the process when
phase locked, the phase error will be zero so the ncophzacc will be incremented each
sample time by the value of nco_freq. Two constants, Freq_const and Phase_const
are used to set the closed loop characteristics. In general, the Phase_const controls
the loop damping while the Freq_const controls the overall gain or “stiffness” of the
control loop. The values are not orthogonal and each affects the other.

Not shown in the block diagram is a clamping function which limits the range of
nco_freq so it does not get too far out of the operating range when the PLL is not
locked.

PLL Lock Detection

The last function to be described is the PLL lock detector. The basic idea is to look at
the lock signal generated by the phase detector section and keep track of the
maximums and minimums using two leaky integrators. If the difference between the
min and max is less than some threshold and the average of the max and min is above
a certain threshold, then the PLL is said to be locked. The first condition takes care of
the case where noise is the predominate signal and the PLL cannot lock onto the noise.
The second test condition takes care of the case where the signal and noise are so low
that there is not enough signal to cause phase lock. The following diagram shows the
basic lock detector logic flow.

SSTV1 Modem Technical Description

Moe Wheatley, AE4JY , April. 1997 17

Lock
>

Peak_max

Peak_max -= Peak_leak
Peak_max +=

Peak_slew

Lock
<

Peak_min

Peak_min += Peak_leak Peak_min -= Peak_slew

(Peak_max-Peak_min)
<

Pk-Pk_lim

(Peak_max+Peak_min)/2
>

Lock_threshold

Lock_Det=FALSE Lock_Det=TRUE

Lock
Signal

N Y

N Y

YN

N Y

The following are code snippets from the SSTVAIN.ASM module showing the AGC and
DPLL processes.

;==
; ======= A G C _ c a l c (Temp1) =======
;==
;This routine is called every A/D sample and calculates a new AGC gain value.
;
;void AGC_calc(Temp1)
; DeltaNew = OldInput - NewInput;
; if((DeltaNew ^ DeltaOld) & BIT15){ // if sign changed
; OldInput = abs(OldInput); // OldInput is peak signal
; AGC_Sum = AGC_Sum + OldInput - AGC_Ave;
; AGC_Ave = AGC_Ave/8;
; }
; DeltaOld = DeltaNew;
; OldInput = Temp1;
;

SSTV1 Modem Technical Description

Moe Wheatley, AE4JY , April. 1997 18

; AGCdelay[0] = Temp1; // put latest sample in delay line
; Temp1 = AGCdelay[AGC_LENGTH-1]; // get oldest sample out for processing
; for(i=AGC_LENGTH-2; i >= 0; i--){ // shift everybody down
; AGCdelay[i+1] = AGCdelay[i];
; }
; Temp1 = Temp1/AGC_Ave; // scale sample by AGC gain
;}

;==
; ======= P r o c e s s I n p u t (input) =======
;==
;This routine is called every A/D sample and processes the AGC’ed input
;sample. The input is bandpass filtered into two channels(I andQ) using,
;a normal bandpass filter for the Iterm and an identical bandpass filter with
;a hilbert transform for the Qterm. A complex nco is implemented with a
;phase accumulator(ncophzacc) that is added to by a phase error(Phzerr) term
;and a frequency term (nco_freq).
;
;void ProcessInput(input)
;{
; BPFdelay[0] = input; // do FIR calculations to get I and Q
; acc = 0;
; for(i=BPFIR_LENGTH-1; i >= 0; i--){
; acc += BPFdelay[i] * IBPFIRCOEF[i];
; }
; Iterm = acc; // Iterm = I bandpass output data
; for(i=BPFIR_LENGTH-1; i >= 0; i--){
; acc += BPFdelay[i] * QBPFIRCOEF[i];
; BPFdelay[i+1] = BPFdelay[i]; // do the shuffle
; }
; Qterm = acc; // Qterm = Q hilbert bandpass output data
;
; ncophzacc = ncophzacc + nco_freq + Phzerr; // update new phase
; nco_sin = SIN_TABLE[ncophzacc>>8]; // create nco sin and cos
; nco_cos = SIN_TABLE[ncophzacc>>8 + PHASE90];
;
; Lock = Iterm*nco_cos + Qterm*nco_sin; // calc lock signal
; Check_lock(); // see if phaselocked
;
; Phzerr = Qterm*nco_cos - Iterm*nco_sin; // calc phase error
; Phzerr = Phzerr * Phase_const; // scale phase error
;
; nco_freq = nco_freq + (Phzerr * Freq_const); // calc new frequency
; // for phase lock
; if(nco_freq < MIN_freq) // clamp new frequency within bounds
; nco_freq = MIN_freq;
; else
; if(nco_freq > MAX_freq)
; nco_freq = MAX_freq;
;}
;..
;==
; ======= C h e c k _ l o c k (Temp1) =======
;==
;This routine is called to determine if the PLL is locked. The peak to peak
;value of a signal is found and if the pk-pk value is less than a specified
;limit and the overall value is above a specified limit then the PLL is
;locked. The input sample is in "Temp0"
;
;void Check_lock(Temp0)
; if(Temp0 > Peak_max) // if greater than current max level
; Peak_max += Peak_slew;
; else
; Peak_max -= Peak_leak;
; if(Temp0 < Peak_min) // if less than current min level
; Peak_min -= Peak_slew;
; else
; Peak_min += Peak_leak;
; if(Peak_max > Peak_max_lim) // clamp to peak limits
; Peak_max = Peak_max_lim;
; if(Peak_min < Peak_min_lim) // clamp to peak limits
; Peak_min = Peak_min_lim;
;
; Temp0 = Peak_max - Peak_min;

SSTV1 Modem Technical Description

Moe Wheatley, AE4JY , April. 1997 19

; Temp1 = (Peak_max + Peak_min) / 2;
; if((Temp0 <= Pk_Pk_lim) && (Temp1 >= Lock_thresh)){
; Flags.LOCK_DET = TRUE;
; }
; else{
; Flags.LOCK_DET = FALSE;
; }
;
;}

SSTV1 Modem Technical Description

Moe Wheatley, AE4JY , April. 1997 20

SSTVOUT.ASM Module

This module uses the demodulated FM value from the SSTVAIN.ASM module and
generates the proper stream of UART serial data bytes for use by JVFAX in decoding
the SSTV pictures.

JVFAX has specified a data format for serial input devices to send SSTV information for
decoding.

The first two bits of each data byte indicate the possible sync frequency ranges.

Bit 1 0 identifies:
=======================
 H L 1050-1100 Hz VIS “1”bit
 L L 1150-1250 Hz HSYNC,VSYNC
 L H 1250-1350 Hz VIS “0”bit
 H H 1500-2300 Hz video data

The upper 6 bits contain video information where 0 = 1500Hz and 63 = 2300Hz. This
provides 64 levels of intensity information to the JVFAX program.

The DSP-93 UART continuously sends data bytes to JVFAX at a rate of 38,400 bps
which equates to a video sample rate of 3840Hz. Sync signals need to be a little more
robust since they determine the start of a picture and each line. For this reason, the
PLL lock signal is used to qualify any signal in the sync range so that false starts will be
reduced. Image video data on the other hand is allowed to pass through regardless of
the lock state because it was thought that noise in an image looked better than
complete dropouts of the image during signal fades. It would be better if another state
could be sent to the PC program to tell it that the signal was invalid and let it intelligently
“fill in” the areas that were noisy.

Another function of this module is to flash three LED’s to aid in tuning.
LED213 flashes when a signal is in the 1050-1150 Hz range.
LED214 flashes when a signal is in the 1150-1250 Hz range.
LED215 flashes when a signal is in the 1250-1350 Hz range.

During SSTV reception, LED214 should flash every .429 seconds during the Horizontal
sync pulse if the receiver is tuned on frequency. LED213 indicates its too low and
LED215 indicates it’s too high. (This is assuming the signal is an SSB signal. If an FM
or AM signal is being received then the signal should be tuned for maximum amplitude
minimum distortion.)

SSTVIN.ASM Module

SSTV1 Modem Technical Description

Moe Wheatley, AE4JY , April. 1997 21

This module gets incoming DSP-93 UART data bytes from the JVFAX program during
transmit and converts them into the proper format to be converted to tones by the
SSTVAOUT.ASM module. The Push To Talk(PTT) is generated to key a transmitter
based on the continuous reception of UART data bytes from JVFAX. If at least some
number of bytes are received per second, then it is assumed that a transmission is
taking place. When the bytes are no longer being received, it is assumed the picture
transmission is done and a state machine is activated that sends out a CW ID string by
amplitude modulating the tone generator at a fixed frequency.

Strangely, JVFAX has a different data format for picture transmission than for reception.
For transmitting, three unique codes are used to signify the sync frequencies.
125 = 1100Hz
126 = 1200Hz
127 = 1300Hz

Values of 0-63 correspond to frequencies from 1500 to 2300Hz.
These values are scaled and sent to the SSTVAOUT.ASM module for outputting the
proper tones to a transmitter.

Below is a diagram of the state machine for generating a CW ID after a SSTV
transmission. An ASCII string containing the users call sign is stepped through
character by character and a look-up table is used to get the proper sequence of dots
and dashes. The table is indexed into by an ASCII value from 0 to 127 and the table
returns a 16 bit value formatted in the following manner. The word in the CW table is
divided into 8 groups of two bits starting at the msb side. The two bits represent one of
four possible states.
00 - end of character
01 - DOT
10 - DASH
11 - SPACE of two dot times
For example, for the letter “L”(value is 76) the table entry used is:

.word 0110010111000000b ;(76) L .-..
Not all punctuation characters are implemented with this table.

SSTV1 Modem Technical Description

Moe Wheatley, AE4JY , April. 1997 22

Send_msb() send_tone()

send_notone()

Send_lsb() send_tone()

send_notone()

Byte_check()

Byte_counter>BYTELIMIT
&&

Flags.TRANSMITON

Byte_counter<BYTELIMIT
&&

!Flags.TRANSMITON

Byte_counter<BYTELIMIT
&&

CW_ID_string[] == 0

cw_word=ASCII_CW_TABLE[]

cw_word=ASCII_CW_TABLE[]

cw_word !=0

cw_word !=0

cw_word ==0

cw_word ==0

CW ID State Diagram

SSTV1 Modem Technical Description

Moe Wheatley, AE4JY , April. 1997 23

SSTVAOUT.ASM Module

This module generates the transmit tone frequencies for SSTV and also the CW ID
tones. Basically if the modem is in the transmit mode and SSTV is being sent, an NCO
is used to generate tones depending on the current value of “TXfreq” which is
calculated in the SSTVIN.ASM module. “TXfreq” is used as the phase increment value
in an NCO oscillator after it is passed through a low pass FIR filter to roll off any abrupt
frequency changes that may occur. This probably isn’t needed but there are plenty of
RAM and cpu cycles available.

If the CW ID is being sent, then the value in “TXfreq” is actually the amplitude value
while the frequency is constant at 700 Hz. This amplitude value is run through a simple
running average routine to roll off the edges of the CW signal to prevent key clicks. A
FIR filter could be used if one wanted to decimate the sample frequency down low
enough to get the low cutoff frequency needed to filter the CW signal. The averaging
filter works well enough in this application.

When not transmitting, the D/A is fed with the receive PLL NCO output so that SSTV
can also be monitored using the usual sound card inputs or limiter circuits with the slight
advantage that the DSP filters and PLL detector might give.

Below is some C code from the SSTVAOUT.ASM module comments.
;void Service_Aout()
;{
; if(AR4 != AR5){ // if transmit Sample_Que is not full
; Sample_Que[AR4++] = OutBuf;
; if(AR4 > Sample_Que + SAMPQUESIZE-1)
; AR4 = Sample_Que;
; if(Flags.TRANSMITON){ // if transmit mode is active
; if(Flags.CWID_ACTIVE){
; CW_Sum = CW_Sum + TXfreq - CW_Ave; //TXfreq is actually
; CW_Ave = CW_Ave/64; //the amplitude modulation
; TXphzacc = TXphzacc + CWFREQ; // update new phase
; Temp1 = SIN_TABLE[TXphzacc>>8]; // create TX sin values
; OutBuf = CW_Ave*Temp1;
; }
; }else{
; LPFdelay[0] = TXfreq; // do Low pass FIR calculation
; acc = 0;
; for(i=LPFIR_LENGTH-1; i >= 0; i--){
; acc += LPFdelay[i] * LPFIRCOEF[i];
; LPFdelay[i+1] = LPFdelay[i]; // do the shuffle
; }
; Temp0 = acc;
; TXphzacc = TXphzacc + Temp0; // update new phase
; OutBuf = SIN_TABLE[TXphzacc>>8]; // create TX sin values
; }
; }else{
; OutBuf = nco_sin; //if not xmitting
; TXphzacc = 0; // send receiver nco
; }
; }
;}
;. .

SSTV1 Modem Technical Description

Moe Wheatley, AE4JY , April. 1997 24

SSTV MODEM TEST METHOD

Several methods were employed in debugging and verifying the modem design. The
primary measurement tool was an oscilloscope. For measuring timing, digital outputs
were used such as LED ports or TNC port bits. For measuring signal data, the D/A
channel of the DSP-93 was used to output various test points.
A Telulex SG-100 signal generator was very useful in providing an assortment of AFSK
signals for tuning the PLL and measuring the demodulator performance.
JVFAX 7.1, EZSSTV, and W95SSTV were used to generate and compare images.

SSTV MODEM PERFORMANCE

On strong SSTV signals there is no difference in performance with reception using the
DSP-93 or using W95SSTV and a sound card. On weak signals in the noise, there is a
narrow S/N region where there is a slight advantage using the DSP-93 of maybe a dB
but rarely does a signal hover around the same S/N ratio. It performs much better than
the simple op-amp limiter demodulators especially on noisy signals. Perhaps the best
use of a DSP for SSTV would be in providing a “brick wall” filter function prior to the
decoding using a sound card interface.

The processor load was roughly measured by measuring the peak and average time it
took to service all seven software modules in the main code loop. The minimum time
around the loop was 15 uSec. Peak processing time around the loop while receiving
and transmitting, was around 90 uSec. This means the Sample_Que probably never
gets even one sample behind. The average time around the loop was about 60 uSec.
This means the processor is running about 65% of a full load at the present sample
period of 91.8uSec. Code size takes about 2.1K of program space.

Areas for Improvement:

Most of the improvements could be made in the PC application side. JVFAX has
problems with pixel registration(the red, green, and blue pixels don’t align correctly)
especially with the Scottie 1 mode. It places the horizontal sync pulse in between the
wrong color planes on receive and transmit making every line off in registration.

The other problem is that only 6 bits of resolution is allowed by the JVFAX serial mode
whereas the DSP-93 has about 12 bits per color of useable resolution. This limits the
color depth of images and can cause contouring in areas of the image.

JVFAX is a DOS based program and is soon going to be obsolete as GUI based
operating systems take over.

SSTV1 Modem Technical Description

Moe Wheatley, AE4JY , April. 1997 25

Ideas for the Future:

A Windows application could be written to interface the serial port to the DSP-93 and
take advantage of all 8 bits in each sample byte.

Also the DSP-93 could provide additional information for each pixel such as whether
the data is valid or just noise so that the application program could intelligently fill in
noisy areas of the image.

These ideas are not likely to be implemented as the W95SSTV program by Jim Barber,
N7CXI and William Montgomery, VE3EC does a great job using a $50 sound card.

References

• Marvin E. Frerking, “Digital Signal Processing in Communication Systems”

• K. Sam Shanmugam, “Digital and Analog Communication Systems”

• Texas Instruments, “TMS320C2x Users Guide”

• Texas Instruments, “Digital Signal Processing Applications with the TMS320 Family
Theory, Algorithms, and Implementations” Vol. 2

• Robert McGwier, N4HY, Notes from HFSIG posting.

